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The Enskog-Boltzmann-equation is generalized to fluids of nonsperical particles with fixed
orientation, i.e. for overdamped rotational motion. General relations between the interparticle
position vector at the instant of contact, the impact parameter and the differential cross section
are derived. The dependence of these quantities of the orientations of the colliding particles is

studied for the special case of hard ellipsoids.

Introduction

The density dependence of transport coefficients
(heat conductivity, viscosity) as evaluated from
Enskog’s version of the Boltzmann equation for
hard spheres [1—3] agrees with measured values
over a surprisingly large range of densities [2, 4, 5].
Thus it seems worthwhile and desirable to extend
the ,,Enkog-theory” to fluids of nonspherical par-
ticles. In contradistinction to earlier theories for
dense gases of rotating particles [6—8], the present
analysis is concerned with fluids of nonspherical
particles where the rotational motion is overdamp-
ed. More specifically, the generalized nonlocal
Enskog-Boltzmann collision operator is derived for
the case where the orientation of the two colliding
particles remains constant during the scattering
process. This should be a good approximation for
nematic liquid crystals or a liquid of nonspherical
particles whose orientation is fixed by an external
(magnetic or electric) field. Without an applied field,
the approximation should still be reasonable for a
dense fluid where the rotation is hindered strongly
by steric effects.

This article proceeds as follows. In Sect. 1, the
generalized Enskog-Boltzmann equation is formu-
lated. Its collision term involves the vector R con-
necting the centers of mass of the colliding particles
at the instance of contact and the differential cross
section ¢. Both quantities depend on the orientation
of the colliding particles. A general relation be-
tween R, the impact parameter b and the differen-
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tial cross section for (convex) non-spherical par-
ticles is derived in Section 2. Then, in Sect. 3, these
quantities are evaluated for hard ellipsoids.

1. Formulation of the Generalized
Enskog-Boltzmann Equation

The nonequilibrium state of a fluid of (axisym-
metric) particles is characterized by the one particle
distribution function

f:f(t,r,c,u),

where ¢, r, ¢ are the time, position and velocity
variables. The unit vector u which is parallel to the
figure axis of a particle specifies its orientation.
With the normalization

ffd3cd2u =n(t,r),

(1.1)

(1.2)

where 7 is the number density of the fluid, the local
average (¥ of a quantity ¥ = ¥(c, u), is, as usual,
given by

n ¥y = [¥]ddedu. (1.3)

The distribution function f is assumed to obey
a kinetic equation of the form

oftf + e Vi+C(f)+ -+ =0,

where — C(f) is the Enskog-Boltzmann collision
term and the dots stand for terms describing orien-
tational changes [9.10] which, however, are not
considered here. The second term of (1.4) is the
usual flow term of the Boltzmann equation.

For the following discussion of the Enskog-Boltz-
mann collision operator, it is convenient to label the
two colliding particles by “1” and “2”, and to de-
note their velocities and orientation vectors by ¢;,
ui, 1= 1, 2.

(1.4)
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Momentum and energy conservation in a collision
imply
_ ’ ’ ’
cs=1(e1+ ) =¢; = }(e;+ ),

9=9" (1.5)
where ¢ is the magnitude of the relative velocity
g=c1—c2=(ge; (1.6)

e is a unit vector. In (1.5), primed variables refer
to the precollisional state. Thus one has

(1.7)

’ ’
cr,e=cs+3ge, ¢ o=cst 3ge’.

With ¢ = ¢;1, u = u;, the generalized Enskog-Boltz-
mann collision term occurring in (2.4) can be written
as

C1(f) = [d2us [d3c; [d2e'g o (e, €) (1.8)
“z[f1(r) f2(r + R) — f1(r) fo(r — R)],
where the differential cross section
a(e, ) = (e, e)

and the interparticle distance vector R, cf. Fig. 1,
are functions of the orientation vectors u; , ug which
will be determined next. In (1.8), the abbreviations
fi=f(ci,w;) and fi’ = f(ei’, u;), =1, 2 have been
used. Notice that the first and second terms of (1.8)
are associated with loss and gain collisions, respec-
tively. The spatial and orientational dependence of
the shielding factor y is disregarded here.

In the next sections, a general relation between
R=R(e, €', u1, u), the impact parameter b and
the pertaining differential cross section

oc=o(e, e, u;, ug)

is established and then rigid ellipsoids are considered
as a specific example.

Fig. 1. Two nonspherical particles at the instant of contact;
ri1, rg are the position vectors for the centers of mass of
particles “1” and ““2”, wu;,2 are unit vectors parallel to
their figure axes.
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2. Classical Cross Section for Nonspherical Particles

For the derivation of a connection between the
differential cross section o (e, e’) and the impact
parameter vector b firstly consider Fig.2 which
shows an ‘“‘impact parameter element” of the in-
coming particles (in the center of mass system) and
the solid angle element

dQ = ed? (2.1)

into which the (detected) particles are scattered.
Since we are concerned with the scattering of non-
spherical particles, there is no azimuthal symmetry
around the e’ direction which falicitates the evalua-
tion of the cross section for spherical particles. Now
let db; and dbs be increments of b, as indicated in
Fig. 2, parallel and perpendicular to b and let de;
and de; be the resulting changes of e; here the
labels “1” and “2” should not be confused with
the previously used labeling of particles. Thus, one
has by definition

be) +db;=b(e+de); ¢=1,2. (2.2
Expansion on the right hand side of (2.2) and ne-
glect of higher order terms yields

dbi = (ab/ae) ® dei ’
notice that e-de; =0 for 1=1, 2.

From the conservation of the number of particles
and the definition of the cross section do, cf. Fig. 2,
one infers

do = — (dby X dby) - €’

(2.3)

o 0\
—\ Qe L e eaj-e
aba abﬂ 7

= — {-:agya_eu-aey delu dez,,. (24)

dQ

Fig. 2. Schematic diagram of the impact parameter element
and the scattering solid angle. Unit vectors parallel to the
incident flux and the detected scattered particles are de-
noted by e’ and e, respectively. The area do spanned by
the vectors db; and db; is perpendicular to e’; the vectors
de; and dez are perpendicular to e.
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Cartesian component notation has been used in the
second line of (2.4). Notice that the exchange u-<--»,
o< ff reproduces the expression (2.4) but now with
Epuy = — Expy instead of e, ; thus dej,deg, in (2.4)
can be replaced by % (dej,desy — deyydegy,). On the
other hand, one has for the solid angle element d€2:

Suy;,d.Q;, = d.Qe;, Eup

= ? (delu d€211 == delv d92v) ’ (25)

where the sign depends on whether e, de;, des are
a right or left hand system. Thus (2.4) and (2.5)
lead to

do ,
dQ‘ = 0'(8, e )
1 , by by
— »2* EaBy Euva €, () ’ee'u aa . (26)

Due to (2.6), the dependence of the differential cross
section ¢ (e, €') on the orientation vectors uq, us of
the colliding partners can be inferred from the
orientation dependence of the impact parameter b
or, practically equivalently, of the vector R joining
the centers of mass of the two colliding particles.
Inspection of Fig. 3 shows that b is related to R by

by = (O — e; e,)Ry. (2.7)

Thus for given R=R (e, e'; u, us) the pertaining
differential cross section is determined by

0‘(e7 e’y u, u2)

1 , OR, ORg
=5 Eaﬂveuvieyeim"&; . (2.8)

To obtain the desired dependence of R on e, e’
for particles with a specific geometry, it is firstly

)

Fig. 3. Schematic diagram of two colliding nonspherical
particles at the instant of contact. The vectors Ry and Re
point from the centers of mass to the point of contact, b is
the impact parameter vector.
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noticed, cf. Fig. 3, that

R—=R;,—R;. (2.9)

where R; o are the vectors from the centers of mass
of particles 1, 2 to the point of contact. From the
shape of the particles a relation between R;, Ry and
the normal vectors ny, 2 and

n=ny,=— —nj

(2.10)

can be established. On the other hand, for the elastic
collisions of hard and smooth particles one has
e — e’ ~ n and consequently

e—e'
n=

=(e—e)[2(1 —e-e)]"12. (2.11)

e—e|
Thus the cross section o (e, e’) can be calculated
according to (2.8) when (2.11) is inserted into the
functional relation between R and normal vector n
which can be inferred from geometric considerations.
Before this point is discussed in some detail for the
collision of hard ellipsoids it is noticed that (2.8) is
equivalent to

ole,e',uj,ug) =%1(1 —e-e’)1

., Ry ORy
o Gaﬂyaﬂpleyel

2.12
on, Ony |’ ( )

where R is now differentiated with respect to the
components of the unit vector n. Furthermore, due
to (2.9, 10) one has

ORqy 0R1y

Y = y
ony 0Ny

0Ray
anzu

= R()+ RY), (2.13)

4

where the tensor RQAZ can be obtained from an

analysis of the shape of one particle.
Scattering of Hard Ellipsoids

An ellipsoid of revolution with the semi axes a =b
and ¢, cf. Fig. 4, is described by the relation

F(R)=R>— J(u-R?2—a2=0,

Fig. 4. One ellipsoidal particle with semi axes a, b, ¢ and
unit vector u parallel to the c-axis.

(3.1)
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where R is the vector pointing from the center of
mass of the ellipsoid to its surface, u is a unit vector
parallel to the figure axis (c-axis) and 4 given by

A=1—a2fc?. (3.2)

Notice that one has 2> 0 (41<<0) for prolate (oblate)
particles and 4=0 for a sphere. The numerical ec-
centricity ¢ is related to 1 by 2= 1 for 1>0.

The vector normal to the surface is proportional
to OF/0R,. Thus (3.1) leads to

n~R—)R-uu=R"+(1—)R", (3.3)

where R*=R—u-Ru and R"=uu-R are the
components of R perpendicular and parallel to u.
Relation (3.3) can be inverted for R= R(n), viz.

R~nt+(1—2A)1In"=n-+pn" (3.4)
with
f=01—2)1—1=i(1—A)1
=c2la?2—1. (3.5)

The proportionality factor needed in (3.4) is ob-
tained by inserting (3.4) into (3.1). The result is

R=oa(n+ fu-nu) (3.6)
with

a=[1+ f(n-up]li2,

So far, one ellipsoid has been considered. For the

scattering of two ellipsoid labelled by 1, 2, the vec-
tor R occurring in (2.9) and (2.13) is given by, cf.
(2.10)

Ry(n) = ZdiAfwn,,,

(3.7)

(3.8)
with

@ =ogai, A, = O+ Biuiul, (3.9)

i=1, 2; a; is given by (3.7) with u replaced by u'.
For equal ellipsoids one has a3y =az, f1=pf2 but
ul = u?, in general.

The tensor Ry, = 0Ry/0n,, cf. (2.13) needed for
the evaluation of the differential cross section ac-
cording to (2.12) can now be calculated from (3.8).
The result is written as

Roy =2 a4 A gnop (3.10)
with '

Aly = buo+ fruiul, fi=offi,  (3.11)

Nou = OMg/Ony = dgu — Ny Mg . (3.12)

Clearly A ... equals A ... apart from the fact that
Bi has been replaced by f;, cf. (3.11).
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Before Ry, and the corresponding expression for
Rpg, are inserted into (3.12), it is noted that

’
EuwvaliNouNry = % €aralesr — €;),

and consequently one has

gle,e')=1(1—e-€')1L (3.13)
| agy Euva €, (e2 — €3) Cop, g ,
where C'..,.. stands for
Cos, pr = > 83 Ay A, . (3.14)

i g
The differential cross section o (e, e’) as given by
(3.13) is not symmetric under the exchange e, e’ —
e’, e. It can be decomposed into its symmetric and
antisymmetric parts o5 and ¢ according to
0= 0%+ 02,

cS:2(e,e') = L[o(e, e) L+ o(e, e)]. (3.15)

It is conjectured that the differential cross section
occurring in the Enskog-Boltzmann collision term
(1.8) is identified with the symmetric cross section

os(e, €') = }| capy euranynaCay, pv| . (3.16)

Now insertion of (3.14) with (3.11) into (3.16) leads
to =
o8 = 1> > [@d; + dydy By (n X ul) - (n X u)]
i g

+ 1@ frfaln - (w X ua)]2.  (3.17)

For the collision of equal ellipsoids with a; =as =a,
(3.17) becomes

08 = ;a?{(a1 + x2)? + B(or + a2)
o8 (n X u1) - (n X us)
+ a3 (n X us) * (n X up)]

+oadad 2 (w1 X u2)]2}. (3.18)

Notice that the term (n X u?)2 occurring in the term

linear in f in (3.17, 18) can be written as

(nXui)Z =1— (n'u13)2

(3.19)

2
=35 — NyuNy uiuui,,,

where the symbol " refers to the symmetric trace-

less part of a tensor, i.e. wu,uy = uytty — 3 Opuy.

In the special case ul =u?=u which is approxi-
mately realized in the presence of a strong orienting
field or in the nematic phase of a liquid crystal,
(3.18) reduces to

05 = a2a?[1+ Ba(n X u)?] = a2(1+B)at,

for a see (3.9).

(3.20)
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Note that the result 0 = a2 for the scattering of
hard spheres with radius a follows, as it should,
from (3.13), (3.17), (3.18) with f1=pf2=0.

Concluding Remarks

In this article, a generalized Enskog-Boltzmann
equation has been formulated and expressions for
the interparticle vector R as well as for the differ-
ential cross section ¢ have been derived for non-
spherical particles with fixed orientation. This case
of overdamped rotational motion is in a certain
sense the opposite limiting case of the practically
free rotational motion encountered in dilute gases
where both classical [7, 11] and quantum mechan-
ical [12] kinetic equations have been applied to a
great variety of nonequilibrium phenomena, cf. [13
to 15] and references given in [3]. The differential
cross section (3.17) is also of importance for the
scattering of rotationg ellipsoids where, however,
the dynamic raltions (1,5—7), (2.11) have to be
modified appropriately [6—8].

For molecular liquids and liquid crystals where
one has a strong damping of the rotational motion,
the kinetic equation (1.8) with (3.8, 9) and (3.17)
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