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The Enskog-Boltzmann-equation is generalized to fluids of nonsperical particles with fixed 
orientation, i.e. for overdamped rotational motion. General relations between the interparticle 
position vector at the instant of contact, the impact parameter and the differential cross section 
are derived. The dependence of these quantities of the orientations of the colliding particles is 
studied for the special case of hard ellipsoids. 

Introduction 

T h e density dependence of t ransport coefficients 
(heat conduct iv i ty , viscosity) as eva luated from 
E n s k o g ' s version of t h e B o l t z m a n n equat ion for 
hard spheres [ 1 — 3 ] agrees w i t h measured values 
over a surprisingly large range of densities [2, 4, 5]. 
T h u s it seems worthwhi le and desirable t o e x t e n d 
t h e , , E n k o g - t h e o r y " to fluids of nonspherical par-
ticles. I n contradist inction t o earlier theories for 
dense gases of rotat ing particles [6—8], the present 
analysis is concerned w i t h fluids of nonspherical 
particles where the rotat ional mot ion is overdamp-
ed. More specifically, the generalized nonlocal 
E n s k o g - B o l t z m a n n collision operator is derived for 
the case where t h e orientation of t h e t w o colliding 
particles remains constant during the scattering 
process. This should be a good approximat ion for 
nematic liquid crystals or a l iquid of nonspherical 
particles whose orientation is fixed b y an external 
(magnetic or electric) field. W i t h o u t an applied field, 
the approximat ion should still be reasonable for a 
dense fluid where t h e rotat ion is hindered strongly 
b y steric effects. 

T h i s article proceeds as follows. I n Sect. 1, t h e 
generalized E n s k o g - B o l t z m a n n equat ion is formu-
lated. I ts collision term involves the vector R con-
necting the centers of mass of the colliding particles 
a t t h e instance of contact and the differential cross 
section a. B o t h quantit ies depend on the orientation 
of t h e colliding particles. A general relation be-
t w e e n R, the impact parameter b and the differen-
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tial cross section for (convex) non-spherical par-
ticles is derived in Section 2. Then, in Sect. 3, these 
quantit ies are evaluated for hard ellipsoids. 

1. Formulation of the Generalized 
Enskog-Boltzmann Equation 

T h e nonequilibrium state of a fluid of (axisym-
metric) particles is characterized b y the one particle 
distribution function 

f = f(t,r,c,u), (1.1) 

where t, r, c are the time, position and v e l o c i t y 
variables. T h e unit vector u which is parallel t o the 
figure axis of a particle specifies its orientation. 
W i t h the normalization 

J/d3cd2M = n(t,r), (1.2) 

where n is the number density of the fluid, the local 
average ( V 7 ) of a quant i ty W = W{c, u). is, as usual, 
g iven b y 

n<W} = J f / d 3 c d 2 w . (1.3) 

The distribution function / is assumed to o b e y 
a kinetic equation of the form 

0/0</ + c - V / + C(/) + ••• = 0 , (1.4) 

where — C[f) is the E n s k o g - B o l t z m a n n collision 
term and the dots stand for terms describing orien-
tat ional changes [9. 10] which, however, are not 
considered here. T h e second term of (1.4) is the 
usual flow term of the B o l t z m a n n equation. 

F o r the following discussion of the Enskog-Bol tz -
m a n n collision operator, it is convenient t o label the 
two colliding particles b y " 1 " and " 2 " , and to de-
note their velocities and orientation vectors b y Cf, 
ui, i = 1, 2. 
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Momentum and energy conservation in a collision 
imply 

cs = i (ci + c2) = c's = \ (c[ + c'2), 

9 = 9', (1.5) 

where g is the magnitude of the relative velocity 

g = ci — c2 = ge\ (1.6) 

c is a unit vector. In (1.5), primed variables refer 
to the precollisional state. Thus one has 

ci,2 = cs ± ige, c'1>2= cs ± Ige'. (1.7) 

With c = c\, u = u\, the generalized Enskog-Boltz-
mann collision term occurring in (2.4) can be written 
as 

Ci(/) = Jd2M2 Jd3C2 §d2e'gcr(e, e') (1.8) 

•X[fi(r)f2(r + R)-f1(r)f,2(r-R)], 

where the differential cross section 

a(e, e') = a{e', e) 

and the interparticle distance vector R, cf. Fig. 1, 
are functions of the orientation vectors u\, u2 which 
will be determined next. In (1.8), the abbreviations 
fi = f{ct,Ui) and = /(c/, m), i = 1 , 2 have been 
used. Notice that the first and second terms of (1.8) 
are associated with loss and gain collisions, respec-
tively. The spatial and orientational dependence of 
the shielding factor % is disregarded here. 

In the next sections, a general relation between 
R = R(e, e', u\, u2), the impact parameter b and 
the pertaining differential cross section 

a = a(e, e', u1} u2) 

is established and then rigid ellipsoids are considered 
as a specific example. 

2. Classical Cross Section for Nonspherical Particles 

For the derivation of a connection between the 
differential cross section a{e, e') and the impact 
parameter vector b firstly consider Fig. 2 which 
shows an " impact parameter element" of the in-
coming particles (in the center of mass system) and 
the solid angle element 

d & = ecLQ (2.1) 

into which the (detected) particles are scattered. 
Since we are concerned with the scattering of non-
spherical particles, there is no azimuthal symmetry 
around the e' direction which falicitates the evalua-
tion of the cross section for spherical particles. N o w 
let d 6 i and db2 be increments of b, as indicated in 
Fig. 2, parallel and perpendicular to b and let de i 
and de2 be the resulting changes of e ; here the 
labels " 1 " and " 2 " should not be confused with 
the previously used labeling of particles. Thus, one 
has by definition 

b{e) + dbi= b(e + de<); i= 1 , 2 . (2.2) 

Expansion on the right hand side of (2.2) and ne-
glect of higher order terms yields 

dbi — (86/Se) • def , (2.3) 

notice that e • de$ = 0 for i — 1 , 2 . 
From the conservation of the number of particles 

and the definition of the cross section do1, cf. Fig. 2, 
one infers 

der = — (d&i X d b 2 ) ' e ' 

fdb 
• d e i 

8 b 
x — • 

6e 

— — £a ßy 
8ba 3bp , 

— — £a ßy 
6e r

 v 

de2 

(2.4) 

Fig. 1. Two nonspherical particles at the instant of contact; 
r i , r<i are the position vectors for the centers of mass of 
particles " 1 " and " 2 " , «1,2 are unit vectors parallel to 
their figure axes. 

Fig. 2. Schematic diagram of the impact parameter element 
and the scattering solid angle. Unit vectors parallel to the 
incident flux and the detected scattered particles are de-
noted by e' and e, respectively. The area da spanned by 
the vectors dbi and df>2 is perpendicular to e ' ; the vectors 
dei and de2 are perpendicular to e. 
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Cartesian component notation has been used in the 
second line of (2.4). Notice that the exchange [ x ^ v , 
cn^-ß reproduces the expression (2.4) but now with 
£/?av — — £a/3y instead of £a/?y; thus deijUde2r in (2.4) 
can be replaced bv ^(dei^de^ — deivde2lU). On the 
other hand, one has for the solid angle element d ß : 

£nvji d£?A = dQ e* exßv 
= T (dei^de2„ — dei„de2 v), (2.5) 

where the sign depends on whether e, d e i , de2 are 
a right or left hand system. Thus (2.4) and (2.5) 
lead to 

d(T 

d Q 
a(e, e') 

1 , 8 8 bj 
2 dev 

(2.6) 

Due to (2.6), the dependence of the differential cross 
section a(e, e') on the orientation vectors « i , u2 of 
the colliding partners can be inferred from the 
orientation dependence of the impact parameter b 
or, practically equivalently, of the vector R joining 
the centers of mass of the two colliding particles. 
Inspection of Fig. 3 shows that b is related to R by 

= {ößV — e ev)Rv, (2.7) 

Thus for given R = R (e, e ; u\, u2) the pertaining 
differential cross section is determined by 

a(e, e', m, u2) 

1 
= 2 £aßy 

8i?a 8 Rß 

faß dev 
(2.8) 

To obtain the desired dependence of R on e, e' 
for particles with a specific geometry, it is firstly 

Fig. 3. Schematic diagram of two colliding nonspherical 
particles at the instant of contact. The vectors R\ and i?2 
point from the centers of mass to the point of contact, b is 
the impact parameter vector. 

noticed, cf. Fig. 3, that 

R - R > — R±, (2.9) 

where i?i> 2 are the vectors from the centers of mass 
of particles 1, 2 to the point of contact. From the 
shape of the particles a relation between i?i , i?2 and 
the normal vectors «i > 2 and 

n = n2 = — ni (2.10) 

can be established. On the other hand, for the elastic 
collisions of hard and smooth particles one has 
e — e' ~ n and consequently 

( e _ c ' ) [ 2 ( l _ e . e ' ) ] - i / 2 . (2.11) 

(2.12) 

Thus the cross section cr(e, e') can be calculated 
according to (2.8) when (2.11) is inserted into the 
functional relation between R and normal vector n 
wrhich can be inferred from geometric considerations. 
Before this point is discussed in some detail for the 
collision of hard ellipsoids it is noticed that (2.8) is 
equivalent to 

a{e, e', ui, u2) = 1(1 — e • e')"1 

, , 8i?a dR ß 

driß 8 nv 

where R is now differentiated with respect to the 
components of the unit vector n. Furthermore, due 
to (2.9, 10) one has 

87? lor 8i??a /->x 

where the tensor R ^ can be obtained from an 
analysis of the shape of one particle. 

Scattering of Hard Ellipsoids 

A n ellipsoid of revolution with the semi axes a = b 
and c, cf. Fig. 4, is described by the relation 

F{R) =R2-Z(u-R)2-a* = 0, (3.1) 

Fig. 4. One ellipsoidal particle with semi axes a, b, c and 
unit vector u parallel to the c-axis. 
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where R is the vector pointing f rom t h e center of 
mass of the ellipsoid t o its surface, u is a unit vector 
parallel to the figure axis (c-axis) and A g iven b y 

A = i - a2/ c2. (3.2) 

Notice t h a t one has A > 0 ( / < 0) for prolate (oblate) 
particles and A = 0 for a sphere. T h e numerical ec-
centricity £ is related t o A b y e2 = A for X > 0. 

T h e vector normal t o the surface is proportional 
to ZF/dRß. Thus (3.1) leads to 

n ~ R — AR • uu = Rx + (1 — A) R", (3.3) 

where R± — R — u Ru and R"=uu-R are t h e 
components of R perpendicular and parallel t o u. 
Relat ion (3.3) can be inverted for R = R(n), v iz . 

R ~ n-L-f (1 - A ) - 1 « " ^ n + ßn" (3.4) 

with 
ß= (l -A)-1- 1 = A(1 - A ) - i 

= c2\a2 - 1 . (3.5) 

T h e proportionality fac tor needed in (3.4) is ob-
tained b y inserting (3.4) into (3.1). T h e result is 

R = oca{n + ßu- nu) (3.6) 

with 
a = [1 + /?(ra • a)2] - 1/'2 . (3.7) 

So far, one ellipsoid has been considered. F o r t h e 
scattering of two ellipsoid labelled b y 1, 2, the vec-
tor R occurring in (2.9) and (2.13) is g iven b y , cf. 
(2.10) 

E f l ( n ) = 2 ä i A ) J v n v , (3.8) 
i 

with 

äi = u.iai, A\v = dßV + ßiu\u\, (3.9) 

i— 1, 2 ; a* is given b y (3.7) wi th u replaced b y ul. 
For equal ellipsoids one has ai = a 2 , ßi = ßz b u t 
u 1 =j= u2, in general. 

The tensor R x ß = dR^/dn^, cf. (2.13) needed for 
the evaluat ion of t h e differential cross section ac-
cording to (2.12) can n o w be calculated from (3.8). 
T h e result is written as 

Rol/I — AlaanGß (3.10) 

with 

Ä l = d*o + ßi<ui, ßi — af ßi, (3.11) 

naß = dnoldriu = öaß — nßnG. (3-12) 

Clearly Ä ... equals A ... apart f rom the fac t t h a t 

ßi has been replaced b y ßi, cf. (3.11). 

Before Rand the corresponding expression for 
RßV are inserted into (3.12), it is noted t h a t 

^ßvX^^on^rv = ~ <?;.) , 

and consequently one has 

a(e,e') = | ( 1 - e - e ' ) - i (3.13) 

' | £aßy ~ ^x) Can, ßv \ , 

where C . . , . . stands for 

= (3.14) 
i j 

T h e differential cross section a(e, e') as g iven b y 
(3.13) is not symmetric under the exchange e, e ' - > 
e', e. I t can be decomposed into its symmetr ic and 
antisymmetric parts <7S and a a according t o 

cr = a s + ffa, 

o*.*(e, e') = i [a(e, e') ± a(e', e ) ] . (3.15) 

I t is conjectured t h a t the differential cross section 
occurring in the E n s k o g - B o l t z m a n n collision term 
(1.8) is identified wi th the symmetric cross section 

as{e, e') = | | £a/Jy £ßvX ny ßv | • (3.16) 

N o w insertion of (3.14) w i t h (3.11) into (3.16) leads 
to 

°s = ? 2 2 + äi äi ß)(nX u})' (re x uJ)] 
i j 

+ iäxä2~ßiß2[n • («i X u2)]2- (3.17) 

F o r the collision of equal ellipsoids with a\ = a2 — a, 
(3.17) becomes 

(Ts = \a2 {(ai + a 2 ) 2 + ß(*i + a 2 ) 

• [a? (re X u i ) • (n X u2) 

- f a l{nX u2) • (n X u2)] 

+ af cdß2 [ n " ( " l X w2)]2} . (3.18) 

Notice t h a t the term (re X u 1)2 occurring in the term 
linear in ß in (3.17, 18) can be wr i t ten as 

(re X Ui)2 = 1 — (re • Ui)2 

= § — riß7lv UißUin , (3.19) 

where the symbol . . . refers to t h e symmetr ic trace-
less part of a tensor, i .e. ußuv = ußuv — \dßv. 

In the special case ul — u2 — u which is approxi-

m a t e l y realized in the presence of a strong orienting 
field or in the nematic phase of a l iquid crystal , 

(3.18) reduces to 

a s — a 2 a 2 [1 + a 2 (re x u)2] = a 2 (1 + /5) a 4 , (3.20) 

for a see (3.9). 
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Note that the result a = a 2 for the scattering of 
hard spheres with radius a follows, as it should, 
from (3.13), (3.17), (3.18) with ß1 = ß2 = 0. 

Concluding Remarks 

In this article, a generalized Enskog-Boltzmann 
equation has been formulated and expressions for 
the interparticle vector R as well as for the differ-
ential cross section o have been derived for non-
spherical particles with fixed orientation. This case 
of overdamped rotational motion is in a certain 
sense the opposite limiting case of the practically 
free rotational motion encountered in dilute gases 
where both classical [7, 11] and quantum mechan-
ical [12] kinetic equations have been applied to a 
great variety of nonequilibrium phenomena, cf. [13 
to 15] and references given in [3]. The differential 
cross section (3.17) is also of importance for the 
scattering of rotationg ellipsoids where, however, 
the dynamic raltions (1,5—7), (2.11) have to be 
modified appropriately [6—8]. 

For molecular liquids and liquid crystals where 
one has a strong damping of the rotational motion, 
the kinetic equation (1.8) with (3.8,9) and (3.17) 

[1] D. Enskog, Kungliga Svenska Vatenskapakademiens 
Handlingar, N y Fold 63, 4, (1922); and in S. G. Brush, 
Kinetic Theory, Vol. 3, Pergamon Press, Oxford 1972. 
S. Chapman and T. G. Cowling, Mathematical Theory 
of Nonuniform Gases, Cambridge University Press, 
Cambridge 1964. 

[2] For a review see M. G. Velarde, in Lecture Notes in 
Physics 31, Springer, Berlin 1974. p. 288. 

[3] G. Schmidt, W . E. Köhler, and S. Hess, Z. Natur-
forsch. 3(5a, 545 (1981). 

[4] J. H. Dymond , Physica 85 A, 175 (1976). 
[5] J. J. van Loef, Physica 87 A , 258 (1977). 
[6] J. S. Dahler and D. K . Hoffmann, in Transfer and 

Storage of Energy by Molecules, Vol. 3, Rotational 
Energv; eds. G. M. Burnett and A. M. North, Wiley, 
New York 1970. 

[7] B. J. McCoy, S. I. Sandler, and J. S. Dahler, J. Chem. 
Phys. 45, 3485 (1966); S. I. Sandler and J. S. Dahler, 
J. Chem. Phys. 4(5. 3520 (1967). 

[8] C. F. Curtiss, J. Chem. Phys. 24, 225 (1956); D. K . 
Hoffmann, J. Chem. Phys. 50. 4823 (1969). 

[9] A. Peterlin and H. A. Stuart, Hand- und Jahrbuch d. 
Chem. Physik, eds. A. Eucken and K . L. Wol f , 8 , 1 B, 
Leipzig 1943. V. N. Prokovskii, Sov. Phys. Uspekhi 
14, 737 (1972). 

[10] S. Hess, Z. Naturforsch. 31a. 1034 (1976). 
[11] Y . Kagan and L. Maksimov, Sov. Phvs. J E T P 14, 

604 (1962); 24. 1272 (1967); 33. 725 (1971); H. F. P. 
Knaap and J. J. M. Beenakker, Phvsica 33, 643 (1967). 

can be applied to transport process using the mo-
ment method solution procedure [3]. Some promis-
ing results have already been obtained for particles 
with small nonsphericity [16]. For liquid crystals, 
the somewhat more subtle limiting case of large 
nonsphericity should be analysed. Furthermore, to 
treat nonequilibrium alignment phenomena, e.g. 
floAV a l i g n m e n t [9, 10, 17], t h e t e r m s indicated b y 
the dots in Eq. (1.4) which describe the dynamics 
of the molecular orientation have to be taken into 
account, e.g. along the lines indicated in [9, 10]. I t 
should be possible to infer the torque excerted on 
a particle in a nonequilibrium situation, e.g. viscous 
flow or heat conduction, from the antisymmetric 
part of the pressure tensor. In this w a y the mag-
nitude of the wrell-known flow birefringence and of 
the heat flow birefringence which has, so far, only 
been calculated [18] and detected [19] formolecular 
gases, could also be obtained for a (model) liquid of 
nonspherical particles. 

A cknoviledgements 
Helpful discussions with Priv. Doz. Dr. W. Köh-

ler, Dr. H. Herold and Dr. I. Pardowitz are grate-
fully acknowledged. 

[12] L. Waldmann, Z. Naturforsch. 12a. 660 (1957); 13a, 
609 (1958); R , F. Snider, J. Chem. Phys. 32, 1051 
(1960). 

[13] L . Waldmann, in Rarefield Gas Dynamics, Proce-
edings of the 8th International Symposium Stanford 
1972, ed. K . Karamcheti , Academic Press, New York 
1974. 

[14] S. Hess, Springer Tracts in Mod. Phys. 54, 136 (1970); 
in The Boltzmann Equation, Theory and Applica-
tions, eds. E. G. D . Cohen and W . Thirring, Springer, 
Wien 1973. 

[15] J. J. M. Beenakker, in Lecture Notes in Physics 31, 
Springer, Berlin 1974. H. Moraal, Physics Report 17, 
225, (1975). 

[16] H. T h u m , Einfluß der Nicht-Sphärizität von Teilchen 
auf anisotrope Wärmeleitfähigkeit und Zähigkeit in 
Gasen und Flüssigkeiten, Diplomarbeit, Erlangen 
1980, unpublished; H. T h u m and S. Hess, to be pub-
lished. 

[17] S. Hess, Z. Naturforsch. 30a, 728, 1224 (1974); I. Par-
dowitz and S. Hess, Physica 100 A, 540 (1980); Z. Na-
turforsch. 36a, 554 (1981). 

[18] S. Hess, Z. Naturforsch. 28a, 861 (1972). 
[19] F. Baas, P. Oudeman, H. F. P. Knaap, and J. J. M. 

Beenakker, Physica 88A , 44 (1977); P. Oudeman, 
H. F. P. Knaap, and J . J. M. Beenakker, J. Phys. 
Chem. 86, 1125 (1982). 


